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Variational data assimilation for Hamiltonian problems
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SUMMARY

We investigate the conservation properties of Hamiltonian systems in variational data assimilation. We
set up a four-dimensional data assimilation scheme for the two-body (Kepler) system using a symplectic
scheme to model the non-linear problem. We use our completed scheme to investigate the observability
of the system and the e�ect of di�erent background constraints. We �nd that the addition of these
constraints gives an improved solution for the cases we have investigated. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Some features of atmospheric dynamics can be modelled using Hamiltonian methods. We
investigate whether the conservation properties of such systems can be exploited when using
data assimilation schemes. To do this we set up a full four-dimensional variational (4D-
Var) data assimilation scheme for the simpler problem of planetary orbits, which also has a
Hamiltonian structure.
Data assimilation involves the integration of observations into a model to give a state

that most accurately describes reality. This approach is used in numerical weather prediction
where there is a very large state vector and many observations—a direct solution of the
data assimilation problem cannot be achieved computationally. Thus, many data assimilation
schemes attempt to �nd ways to approximate the problem [1]. For variational data assimilation
methods our solution is obtained by �nding the optimal state of an objective function, J , at the
initial time. J includes an observation term measuring the departures between the observations
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and the model state for all observations over a given assimilation time window. In addition, it
usually has a background term that accounts for the departure between a known background
state and the model state at the initial time. This term is required where the problem is very
large, and not enough information can be gained from the observations alone. For our problem
a background term is not necessary as the problem is su�ciently small.
4D-Var data assimilation includes data that is distributed in time and space. We initially

assume that the only contribution to J is given by the observation term and thus

J (x)=
N∑
n=0
(yn −Hn[xn])TR−1

n (yn −Hn[xn]) (1)

Here n denotes quantities at time tn; yn are the observations, xn the model states and Hn is
the observation operator that transforms the model space into that of the observations. The
matrix Rn is the observation error covariance matrix describing statistical information about
the errors in the observations.
The optimization of Equation (1) is subject to the strong constraint that the model states,

xn, are a solution to the numerical model. In addition, it is necessary that the forward model
can be linearized, and that the resulting linear model exhibits the same local behaviour as the
original. This is known as the tangent linear hypothesis.
Here we �nd the optimal state using a quasi-Newton optimization algorithm that requires

the calculation of J and its gradient, ∇J at each iteration. The gradient of the observation
term can be found by running the adjoint model backwards in time. The adjoint is determined
from the transpose of the tangent linear model, but is more generally derived directly from
the code of the linear model [2]. Thus to optimize J we require the non-linear forward
model and the adjoint. The latter, however, also requires the derivation of the tangent linear
model.
In this paper we investigate whether we can retrieve the true state by using a good con-

servation method for the forward model of a 4D-Var scheme. Where this in itself does not
produce a good solution, we investigate the e�ect of adding two di�erent constraints. For the
�rst we add a term to the objective function that constrains the optimal state vector to be
close to the background state vector. This term has the form �1(xb − x0)(xb − x0)T. Here xb
and x0 are the background state and the model state, respectively, both at the initial time.
For our second case, instead of constraining the state vector directly, we add a term to the
objective function such that the energy of the optimal state is close to the energy of the
background. Here the constraint term is �2(E(xb)−E(x0))2. The parameters �1 and �2 allow
the weight of each of the terms to be controlled.

2. MODELLING THE TWO-BODY PROBLEM

2.1. The continuous problem

The Kepler problem describing the motion of two bodies, m1 and m2, in mutual orbit is one
of the simplest examples of a Hamiltonian system. By setting the origin at the centre of
mass we can reduce the problem to that of one particle of mass �=m1m2=(m1 +m2), in orbit
around one particle of total mass, m1 +m2. Our continuous equations of motion can therefore
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be written as two �rst-order, non-dimensional equations describing the evolution of position,
q=(q1; q2), and momentum, p=(p1; p2),

dq
dt
= p;

dp
dt
= − q

(q21 + q
2
2)3=2

(2)

The two-body problem has two conserved quantities, the Hamiltonian, E, which for this
problem is the total energy, and the angular momentum, L. These are given by

E=
1
2
(p21 + p

2
2)− 1

(q21 + q
2
2)1=2

= constant; L= q1p2 − p1q2 = constant (3)

These characteristics are intrinsic to the physical problem and provide a useful test of the
numerical model.

2.2. The discrete problem

To test the e�ect of these conservation properties in the 4D-Var scheme it is essential that
they are captured by the discrete model. In recent years geometric integration has attempted
to address the issue of preserving global features, and in particular symplectic methods are
particularly good at conserving energy and can also conserve angular momentum [3]. Follow-
ing previous work on the two-body problem we use a second-order, symplectic, Runge–Kutta
scheme known as the St�ormer–Verlet method [4]. Our initial conditions are given by

q0 = (1− e; 0); p0

(
0;

√
1 + e
1− e

)
(4)

corresponding to an elliptical trajectory with eccentricity e, semi-major axis a=1 and energy
E= − 0:5.
We test the non-linear model by looking at the di�erence between the energy given by the

model and the true energy for the given initial conditions. For a circle this di�erence is of
the order 10−14—here the scheme does well. If we increase the eccentricity, the di�erence
between the truth and the model trajectory increases around the point of closest approach.
These deviations can be explained by considering the second of Kepler’s three laws—a line
joining the orbiting body and the central body will sweep out equal areas in equal times.
Hence, at closest approach the body will have a greater velocity. As we are using a �xed
step method to model the problem, this means the trajectory will be modelled by fewer steps
at this point giving a less accurate solution [3].
After �nding a suitable non-linear forward model, we linearize the discrete scheme to �nd

our tangent linear model. From this we are able to derive our adjoint and thus calculate the
gradient of the cost function. We then test both the code and the validity of the tangent linear
hypothesis using standard methods [5]. The validity time is a measure of how long the linear
model is a good approximation to the non-linear model. To test this, we track the evolution
of a perturbation in both models. We �nd that for a circle the validity time is long, whereas
if we increase the eccentricity the validity time is reduced, suggesting that the more eccentric
ellipses exhibit more non-linear behaviour. From the linear model we construct the adjoint
directly from the code. This is then tested using standard techniques [5]. We are now able to

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1361–1367



1364 L. R. WATKINSON ET AL.

set up the 4D-Var scheme using a quasi-Newton iterative method to �nd the optimal state.
For this optimization method we use the following stopping criteria [6]:

Jk−1 − Jk
1 + |Jk | ¡�;

‖x k−1 − x k‖
1 + ‖x k‖ ¡

√
�;

‖∇Jk‖
1 + |Jk |6

3
√
� (5)

For our experiments all three criteria must be met, and we use a value of �=10−6.

3. ASSIMILATION EXPERIMENTS

For our investigation we carry out identical twin experiments. Here, synthetic observations
are generated by the forward, non-linear model, allowing us to know the true solution. These
‘observations’ can be made more realistic by adding noise to them. Here we add noise with
a Gaussian distribution with variance 10−4 and no bias.

3.1. Observability

In general we do not have observations of all of the variables at every timestep. We investigate
whether we still obtain a good solution if we use fewer observations by looking at the
observability of the system. For observations at two timesteps the observability matrix is

H̃=
(
H
HM

)
(6)

where H is the linearized observation operator and M is the linear model. If matrix H̃ has full
column rank then the system is said to be observable, that is, we can construct the solution
from the given observations. This limited analysis suggests that the system is fully observable
if we have any two of the four variables as observations.
To look at this further we run our 4D-Var scheme using observations in all four variables,

position observations only, and �nally observations of momentum only. Initially we use ob-
servations at every other timestep where all four variables are used, and every timestep for the
other two cases, so that we are using the same number of observations in each case. For all
our experiments, the data assimilation window has length t=12:6, with timestep, �t=0:001.
Figure 1(a) compares the error between the truth and the model trajectories of the three cases
over the data assimilation window and a subsequent forecast. In this �gure, and in Figure 1(b),
the thick solid line denotes observations in all variables, the thin solid line observations in
position only and the dotted line observations of momentum only.
We see that over the data assimilation window the error for each of the three cases is of

a similar magnitude. However, where we have used only observations of position in the 4D-
Var scheme, the error in the forecast is diverging. This contradicts the result found previously
using the observability analysis for two timesteps only—although we have used observa-
tions in two of the four variables we have not reconstructed the true solution. This suggests
that although we are using a good energy conserving model, the data assimilation scheme
does not always produce a good solution. We therefore consider the addition of an explicit
constraint.
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Figure 1. Error in trajectory between the optimal solution and the truth for e=0 and assimilation
window t=12:6, for: (a) dense observations; and (b) sparse observations.

3.2. Constraints

Generally 4D-Var problems include a background term, as discussed in Section 1. Typically
this uses the background state vector directly and so our �rst constraint is of this form. We
also investigate the use of the Hamiltonian as an explicit constraint by adding a term that
constrains the energy of the solution to be close to the energy of the background. We com-
pare these constraints using sparse observations so that their e�ect is more easily seen. We
repeat the experiment as in Section 3.1, this time using observations every 5000 timesteps
where all variables are observed, and every 2500 timesteps where only two of the four are
observed, thus assimilating 12 observations. Figure 1(b) illustrates these results without us-
ing any constraint. We see that when we use observations of all variables, but at fewer
observation times, the solution is diverging. This suggests it is better to have more fre-
quent observations, even if they are of position or momentum only. We use this diverging
case to investigate the e�ect of constraints. In both cases we use the truth as the back-
ground. Our choice of the parameters �1 and �2, controlling the weights of the constraints,
are chosen such that these are approximately in balance with the observation term in the cost
function.
Constraint using xb: Here the optimal solution must �t the observations and remain close

to the background state vector. Figure 2(a) shows the e�ect of including a background con-
straint where we have observations every 5000 timesteps. Here, and in Figure 2(b), the solid
line and dotted line show the unconstrained and constrained results, respectively. There is im-
provement everywhere over the data assimilation window and the forecast but the error is still
diverging.
Constraint using E(xb): Using the same observations, we constrain the energy of the as-

similation solution to be close to the energy of the background. In Figure 2(b), we can
see that, while the solution at the beginning of the window is worse than without the con-
straint, the forecast is considerably improved. In addition the error diverges less than in
Figure 2(a).
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Figure 2. Error in trajectory between the optimal solution and the truth using sparse observations of mo-
mentum with: (a) a background constraint, �=30 000; and (b) an energy constraint, �=120 000 (e=0,

assimilation window t=12:6).

4. CONCLUSIONS

We have seen that when producing a numerical model for this simple Hamiltonian system
it is possible to �nd methods that are very good at preserving the physical characteristics
of the problem—energy and angular momentum conservation. However, in spite of this, the
data assimilation scheme does not produce a good solution in all cases. We have investigated
whether these results can be improved using constraints and have found that if we use our
background state directly as a constraint we notice an improvement in the solution. If we
instead use a constraint on the energy, the forecast is further improved.
However, further investigation into the nature of the diverging forecast suggests that this

behaviour is a result of the geometry of the problem. If the assimilation trajectory has a
di�erent semi-major axis to the truth, then the period of the orbit will be di�erent (Kepler’s 3rd
law). Thus, the two trajectories will move out of and then into phase periodically and the error
will increase and decrease, respectively. This e�ect is con�rmed by producing a long forecast
for the unconstrained example in Figure 2—after 500 orbits the error reaches a maximum
of approximately 2.8 then begins to decrease. We have seen that adding a constraint on the
energy reduces this divergence. Because any ellipse with the same energy will have the same
semi-major axis and period [7], a constraint on the energy constrains these parameters as well.
We can therefore see that these constraints a�ect the geometry of the assimilation solution.
Because of this phase problem, comparison between the two constraint types is di�cult.

It may prove useful to investigate alternative methods of measuring the accuracy of the
assimilation solutions. In general, however, the results for the two-body problem need to be
tested in a more complex system and work is in progress in this direction.
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